液氮是無色、無味、低粘度的透明液體(ti) ,化學性質穩定。液氮在常壓下的沸點是-195.8℃,當它與(yu) 被凍食品相接觸時,能吸收的蒸發潛熱為(wei) 198.9kJ/kg;再讓氮蒸氣升溫至-20℃,平均比熱以1.047kJ/(kg·K)計,則能吸收184.1kJ/kg。兩(liang) 項合計為(wei) 383.0kJ/kg,是一種理想的製冷劑.用液氮速凍食品,最早始於(yu) 美國。美國在50年代就開始了這方麵的研究,至1960年即正式用於(yu) 速凍食品。1964年開始在生產(chan) 上迅速推廣。
液氮速凍技術產(chan) 生的背景是:
1、50年代末,由於(yu) 宇宙空間技術的發展,作為(wei) 火箭燃料所產(chan) 生的大量液態氧的需要,促使空氣液化分離工業(ye) 的飛躍發展。液氮的生產(chan) 使空氣中所含78%的氮的大量液化生產(chan) 成為(wei) 可能,從(cong) 而為(wei) 冷凍食品工業(ye) 新的應用開辟了途徑。
2、60年代初,美國的冷凍食品工業(ye) 麵臨(lin) 一個(ge) 新的轉折點,當時的冷凍食品向三個(ge) 方向發展:(1)冷凍食品向“單體(ti) 快速凍結”(IQF)方向發展;(2)要求通過連續速凍裝置提高冷凍食品的生產(chan) 量;(3)要求冷凍食品向高質量的速凍保鮮食品發展。由於(yu) 這些要求促使凍結方法必須在技術上進行更新,因此液氮速凍技術應運而生,並迅速得到廣泛應用。
液氮速凍有著下列優(you) 點:
(1)液氮可與(yu) 形狀不規則的食品的所有部分密切接觸,使傳(chuan) 熱阻力降低到最小限度。
(2)液氮無毒,且對食品成分呈惰性,再者,由於(yu) 替代了從(cong) 食品中出來的空氣,所以可在凍結和帶包裝貯藏過程使氧化變化降低到最小限度。
(3)凍結食品的品質高。由於(yu) 液氮和食品直接接觸,以200K以上的溫差進行強烈的熱交換,故凍結速度極快,每分鍾能降溫7~15K。食品內(nei) 的冰結晶細小而均勻,解凍後食品質量高。
(4)凍結食品的幹耗小。用一般凍結裝置凍結的食品,其幹耗率在3%~6%之間,而用液氮凍結裝置凍結,幹耗率在0.6%~1%之間。所以適於(yu) 凍結一些含水分較高的食品,如楊梅、西紅柿、蟹肉等。
(5)占地麵積小,初投資低,裝置效率高。
隨著液氮速凍技術的進一步完善和發展,它被迅速、廣泛應用於(yu) 魚、蝦、螃蟹、雞、鴨、肉(牛、羊等)、水果(楊梅、荔枝等)、蔬菜、及各種預製食品(牛排、生魚片、肉丸子、炸蝦、肉餅、漢堡包、比薩餅、蛋製品、湯料等)的冷凍中。英國1981年液氮速凍食品占冷凍食品的10%,用液氮量超過100kt。西歐液氮產(chan) 量的1/3用於(yu) 食品速凍和冷藏運輸。日本液氮速凍食品約占冷凍食品的40~50%。目前美國有幾百家食品加工企業(ye) 采用液氮速凍,僅(jin) 一家速凍牛排廠每天用700t液氮。我國70年代初北京、上海就已研製出液氮速凍食品生產(chan) 線,80年代先後從(cong) 日本、瑞典、法國、美國和丹麥等國引進了各種速凍裝置(包括液氮速凍),並對銀魚、湖蟹、對蝦等鮮活水国产传媒在线液氮速凍成功。由於(yu) 每公斤速凍食品需用液氮0.8~1kg,受液氮價(jia) 格高的影響,1991年我國自己製造的250台各類速凍裝置中,采用液氮的極少,造成我國目前液氮速凍食品在冷凍食品中所占比例很低,未能廣泛普及。
近幾年,隨著改革開放的深入,國外主要跨國氣體(ti) 公司競相在我國建立合資企業(ye) ,帶來了先進的空分設備、技術和管理,使我國低溫液體(ti) 的產(chan) 量大幅度提高,供應的地區和範圍不斷擴大,價(jia) 格大幅度降低(液氮的售價(jia) 從(cong) 2元/kg左右,降低到1元/kg以下),大大促進了液氮的應用。
利用液氮來快速冷凍食品的優(you) 越性很多,不一而足,但它目前應用中也存在下列問題,急待解決(jue) :
(1)因為(wei) 凍結速度極快,食品表麵與(yu) 中心之間會(hui) 產(chan) 生較大的瞬時溫差,膨脹壓力大,造成低溫斷裂,破壞食品的組織結構,給食品品質帶來不利影響。
(2)液氮蒸發後成為(wei) 低溫氮氣,其具有吸收大量顯熱的能力,充分利用這部分冷量是提高液氮冷凍設備經濟性的根本,但目前利用率不高,措施有待加強。
2.2.1液氮食品速凍裝置
液氮凍結方式大致有沉浸式、噴淋式、冷風循環式三種。
沉浸式冷凍是將食品完全浸入液氮中,它可以達到所期望的快速凍結,食品占用的空間小,同時產(chan) 生能力變化的幅度也很顯著,但液氮耗量較大,因為(wei) 僅(jin) 用了液氮的潛熱這部分冷量。
噴淋式冷凍設有三個(ge) 冷凍區:預冷區、凍結區和均溫區。液氮經噴嘴成霧狀與(yu) 食品進行熱交換,液氮吸熱蒸發成氮氣,氮氣又被用來預冷新進入的食品,這樣既利用了液氮的潛熱,又利用了液氮的顯熱,使冷量得到充分利用。
冷空氣循環式冷凍,由液氮冷卻循環的冷空氣,用空氣作為(wei) 載冷劑冷凍食品,可擯棄龐大的製冷設備,減少初投資。
具體(ti) 的凍結裝置可以分為(wei) :液氮櫃式凍結裝置、隧道式凍結裝置、沉浸式凍結裝置、旋轉式凍結裝置等。
2.2流態化食品速凍理論和裝置
流態化現象早就被人們(men) 所認識,它最初用於(yu) 化學工程,隨後陸續在能源、冶金和食品工程等領域得到應用。1959年瑞典的Frigoscandia公司首先使用這種方法凍結食品,並於(yu) 1962年研製成功世界上第一台試驗性的流態化凍結裝置。此後,美國、法國、保加利亞(ya) 、前蘇聯、日本等國家對流態化的應用和理論研究都十分重視,特別是近二十年來冷凍食品的發展,促進了流態化凍結裝置的研製工作。目前,這種凍結裝置已在各國冷凍食品工廠,特別是蔬菜加工廠中被廣泛使用。
2.2.1流態化食品速凍的基本原理
流態化快速凍結,就是使置於(yu) 篩網或槽板上的顆粒狀、片狀或塊狀食品,在一定流速的低溫空氣自下而上的作用下形成類似沸騰狀態,像流體(ti) 一樣運動,並在運動中被快速凍結的過程。
當冷氣流自下而上穿過食品層而流速較低時,食品顆粒處於(yu) 靜止狀態,稱為(wei) 固定床A。隨著氣流速度的增加,食品床層兩(liang) 側(ce) 的氣流壓力降也將增加,食品層開始鬆動B。當氣流速度達到一定數值時,食品顆粒不再保持靜止狀態,部分顆粒懸浮向上,造成床層膨脹,空隙率增大,即開始進入流化狀態。這種狀態是區別固定床和流化床的分界點,稱為(wei) 臨(lin) 界狀態。對應的最大壓力降值叫做臨(lin) 界壓力,對應的風速叫做臨(lin) 界風速。臨(lin) 界壓力和臨(lin) 界速度是形成流態化的必要條件C。當氣流速度繼續增加時,床層將繼續膨脹,床層空隙率也隨之增加。但床層中的實際氣流速度則保持不變,流體(ti) 的壓降隻是消耗在托起固體(ti) 顆粒的重量上,即床層的壓力降與(yu) 氣流速度無關(guan) 而始終保持定值D。此時強烈的冷氣流與(yu) 食品顆粒相互作用,使食品顆粒呈時上時下、無規則地運動,因此食品層內(nei) 的傳(chuan) 質與(yu) 傳(chuan) 熱十分迅速,從(cong) 而實現食品單體(ti) 快速凍結。若氣流速度進一步增加,顆粒則被流體(ti) 帶走,床層顆粒減少,空隙率增加,床層壓力降減小,流化床成為(wei) 輸送床E。流化床速凍生產(chan) 和實驗均在輸送床前麵階段進行,曲線AD為(wei) 標準流態化曲線。
食品流態化速凍的主要特點是:
(1)凍結速度快。流態化凍結過程具有很強的換熱特性。與(yu) 傳(chuan) 統的空氣強製循環凍結裝置相比,換熱強度增加了30~40倍。這是因為(wei) :食品懸浮凍結時的熱阻減少15~18倍,国产传媒在线表麵與(yu) 冷空氣的放熱係數()增大4~6倍,有效換熱麵積增大3.5~10倍。所以流態化凍結裝置的凍結速度要比普通凍結設備的速度高幾十倍。由於(yu) 凍結速度快,所以流態化凍結能最大限度地保持食品原有的營養(yang) 成份和新鮮狀態。
(2)實現單體(ti) 快速凍結。由於(yu) 食品在凍結過程中呈懸浮狀態,食品凍結後不會(hui) 粘連在一起,實現了IQF凍結,不僅(jin) 質量好,而且便於(yu) 包裝和消費者食用。
(3)食品幹耗少。每個(ge) 速凍食品的表麵都有一層很薄的冰膜,既有利於(yu) 保持食品鮮度防止氧化,而且幹耗較少。瑞典學者對蘑菇、草莓等進行的對比試驗表明,流態化凍結的幹耗幾乎隻是強製送風隧道凍結的一半左右。這對價(jia) 格較高的食品顯得尤為(wei) 重要。
(4)易於(yu) 實現機械化和自動化連續生產(chan) ,生產(chan) 效率高,工人在常溫條件下進行操作,改善了勞動條件。
當然食品流態化凍結也有局限性,它僅(jin) 適用於(yu) 顆粒狀食品,一般其特性尺寸在50mm以內(nei) ,最大不得超過100mm。目前國外用流態化凍結的食品種類主要有:
菜類:青豌豆、豆角、玉米、青刀豆、油炸或水煮馬鈴薯、胡蘿卜丁或片、整顆或切片蘑菇、花菜、辣椒、西紅柿、包菜以及切成塊、片、條狀的各種蔬菜。
水果類:蘋果片、菠蘿片、草莓、黑苺、櫻桃、馬林果、李子、杏、討、紫漿果、葡萄、荔枝、桂圓等。
肉食類:肉丁、炸肉丸子、魚片、魚條、小蝦、蝦仁等。